Introduction

Ground wiring can often limit system performance. The purpose of this application note is to help the system designer utilize the benefits of the FAN2011 and FAN2001 families of high performance step-down DC-DC regulators, to avoid PCB layout related problems and maximize overall system performance. The basic concept of “star grounding” is presented and ways of implementing star grounding for systems like a cell phone, are shown.

Grounding Issues

Ground is defined as a reference potential for linear circuit elements such as amplifiers, voltage references, and A/D converters. It is used as the return for power systems elements such as switching regulators, power amplifiers, and digital circuit blocks. It is also used as a shield to prevent the propagation of electromagnetic noise in the circuit. Because of these diverse uses, care must be taken in laying out the PCB ground system to avoid interference between different areas of the board.

The finite resistance of the grounding path may couple the noise generated by the power elements into the signal path of the precision circuit elements, as shown in Figure 1.

The Star Ground Technique

In all systems, the correct choice of the ground junction point or single point ground reference, as it is sometimes called, is important. The power management area in particular requires special care as it supplies the current for the whole system. It is necessary to first evaluate the flow of the power supply and signal currents, and then configure the path of the return currents and the location of the junction point. This is necessary to minimize the introduction of DC offsets and noise into the signal return paths.

In star grounding, a common point is chosen to which to connect all ground lines. A physical point is chosen on the circuit board to serve as the star ground point and all grounds radiate from that point to the separate parts of the system. Any one of the ground lines radiating from the star ground may star again, forming a local star ground for a sub-circuit. Special care must be taken to separate the signal ground from the power ground at a star, such that no power current will flow through any signal line ground. Cell phone system design is complex as it compounds various sub-circuits such as analog baseband, digital baseband, audio amplifiers, LCD
controller, power and battery management, and RF transceiver. Such a system is shown in Figure 3 with a general scheme of a “star” ground connection. Ideally, all grounds would converge on the main star and a single point ground reference would be generated at that location. It is physically difficult to bring all the traces on a board to a physical location and make contact at a mathematical point to avoid current generated interference. Therefore, the main star might be broken into sub-stars. This shifts the burden to coupling signals from one star to another, which have slightly different, time variable ground reference potentials. Signal coupling between different blocks would have to be differential to avoid all ground problems.

Figure 3. Star Ground Connection for a Cell Phone

**FAN2011 and FAN2001 Regulators**

The FAN2011 and FAN2001 series of regulators uses a current mode control loop with a fast transient response that ensures excellent line and load regulation. A star ground connection ensures that the highest performance is achieved. The local ground plane for the switching regulator is shown in Figure 4.

Figure 4. Star Ground Connection for High Performance DC-DC Converters

To benefit from the high performance of the FAN2011/ FAN2001 families of regulators, care must be taken designing the PCB layout. The high ground current paths are identified in Figure 4 by bolded lines. The voltage feedback signal, internally connected to an error amplifier, is sensitive to noise and the resistors must be routed separately from the high current paths. If large ground noise is coupling into the feedback signal the device may become unstable and depending on the noise magnitude, the output voltage will be out of regulation. The internal reference of the device is connected to AGND pin. This pin should also be routed separately from the high current paths directly into the “star.” Any DC offset introduced into the analog ground pin will affect the load regulation and consequently the regulator’s DC output voltage accuracy. An optimum PCB layout for the FAN2011 family is shown in Figure 5.

Figure 5. PCB Layout
Summary Points:

- Printed circuit board traces have substantial resistance.
- The star ground technique eliminates ground noise problems due to PCB resistance.
- When designing a PCB layout, first evaluate the flow of power supply and signal currents, and then configure the path of the return currents and the location of the junction point. This will minimize the introduction of DC offsets and noise into the signal return paths.
- To benefit from the high performance of the FAN2011 and FAN2001 families of DC-DC regulators, local star ground techniques should be considered for the switching regulator embedded in an application system.