A practical method for determining the thermal resistance of a heat sink in a power supply is provided. The basic principles are straightforward. The implementation is unique to each system and heat sink arrangement.

The basic principle is to operate the power supply under a known set of conditions. Monitor the case temperature of the power switch in question along with the heat sink and ambient temperature. Then disconnect the power dissipation components from the rest of the circuit. Connect the power dissipation components to a DC power supply. Set the system up such that any fans are operating as they normally would. Apply constant power to the power dissipation components. Allow the system to stabilize at the case and heat sink temperature of the previous operation. The effective thermal resistance is determined from $R_{θ_{sa}} = \frac{\Delta T}{\text{power}}$.

The following example demonstrates how this approach is used to determine the thermal resistance for a heat sink with two IGBTs mounted on the same heat sink in a two switch forward converter.

Initially, the power supply is operated at full load with 50°C ambient intake air temperature. The case temperatures of Q1, Q2 and the heat sink along with the fan voltage are recorded. The fan voltage is used to ensure that the same cooling effort is exerted when the IGBTs are operated in a standalone mode. A representation of the physical setup is provided in Figure 1.

To determine the thermal resistance for a heat sink ($R_{θ_{sa}}$), the IGBTs are removed from the circuit and the gate is shorted to the collector for each IGBT. The fan is disconnected and operated at the same voltage as recorded earlier by a standalone power supply. Each IGBT is operated in the linear mode until the steady state case and heat sink temperatures match those from the normal operation. Since the IGBTs are in a linear mode, the total power dissipated is $V_{CE} \times I_C$. The table below summarizes the results.

This method works best if all the major power dissipation components in a power supply are measured at the same time.

<table>
<thead>
<tr>
<th>POWER DISSIPATED (W)</th>
<th>AMBIENT TEMPERATURE (°C)</th>
<th>HEAT SINK (°C)</th>
<th>T_{C-Q1} (°C)</th>
<th>T_{C-Q2} (°C)</th>
<th>$R_{θ_{sa}}$ (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.69</td>
<td>50</td>
<td>77</td>
<td>75</td>
<td>78</td>
<td>1.19</td>
</tr>
</tbody>
</table>
TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST ® MICROWIRE™ SILENT SWITCHER® UHC™
Bottomless™ FAST™ OPTOLOGIC® SMART START™ UltraFET®
CoolFET™ FRFET™ OPTOPLANAR™ SPM™ VCX™
CROSSVOLT™ GlobalOptoisolator™ PACMAN™ STAR*POWER™
DenseTrench™ GTO™ POP™ Stealth™
DOME™ HiSeC™ Power247™ SuperSOT™-3
EcoSPARK™ FC™ PowerTrench® SuperSOT™-6
E²CMOS™ ISOPLANAR™ QFET™ SuperSOT™-8
EnSigna™ LittleFET™ QS™ SyncFET™
FACT™ MicroFET™ QT Optoelectronics™ TinyLogic™
FACT Quiet Series™ MicroPak™ Quiet Series™ TruTranslation™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>