AN-8102
Recommendations to Avoid Short Pulse Width Issues in HVIC Gate Driver Applications

1. Introduction

The High-Voltage Integrated Circuit (HVIC) gate driver family is designed to drive an N-channel MOSFET or IGBT up to 600 V. One of the most common methods to supply power to the high-side gate drive circuitry of the high-voltage gate drive IC is the bootstrap power supply. This bootstrap power supply technique has the advantage of being simple and low cost. However, duty cycle is limited by the requirement to charge the bootstrap capacitor and serious problems occur when extremely short pulse width is used in the application system. This application note explains the features of HVIC gate drivers and provides recommendations to avoid short pulse-width issues in the application.

In the HVIC gate driver block diagram shown in Figure 1, a typical HVIC gate driver consists of input, pulse generator, level shifter, Under-Voltage Lockout (UVLO), control latch, and driver circuit. HVIC gate driver IC uses bootstrap method to control MOSFET and IGBT. By adding a bootstrap circuit outside the HVIC, the high side can be supplied with a signal power source. This kind of “floating supply” is suitable for providing gate drive circuitry to directly drive high-side switches that operate up to rail voltages. The basic application circuit of the bootstrap supply, shown in Figure 2, is comprised of bootstrap diode (D1) and capacitor (C1).

![Figure 1. Block Diagram of High-Voltage Gate Driver IC](image1)

![Figure 2. Typical Application Circuit for FAN7190](image2)
2. Operation Modes and Avoiding Potential Application Issues

This section discusses three operation condition: normal, missing output, and abnormal.

Figure 3. Evaluation Circuit for HVIC Gate Driver IC

Latch-up can result in keeping the status of output HIGH even if input is LOW. This condition leads to shoot-through when HO and LO are turned on at the same time. This failure mode is the worst case and is discussed in the “Abnormal Output Operating Condition” section.

2.1. Normal Output Operating Condition

As shown in Figure 4, the SET and RESET pulse is generated from the pulse generator according to input edge because the power dissipation of R1 and R2 should be large in case VB is 600 V. That is why short pulse SET and RESET is used to reduce power consumption and power dissipation and size of R1 and R2.

Figure 4. Normal Operating Simulation Result

The set and reset signal is delivered to set and reset latch (control latch) circuit through the level-shifter circuit between the low-voltage circuit and high-voltage circuit.

The control latch circuit keeps output status according to the SET and RESET pulse signal. The control latch circuit turns the output circuit on and off and output is generated. That complex circuit creates the propagation delay between input and output.

2.2. Missing Output Operating Condition

Missing output means HO is not generated even though input signal is provided to HIN. Although the pulse generator generates both SET and RESET pulses according to input signal, the reconstructed signal by control latch circuit is too short and is filtered by parasitic RC filter in RRS latch output circuit. The control latch output signal is not delivered to the next driver circuit, shown in Figure 5.

Figure 5. Missing Output Operating Simulation Result

Missing output range is from 30 ns to 50 ns at 25°C. With temperature increasing, the missing output range is shifted up to around 58 ns, as shown in Figure 7. The short pulse width, where the missing-operation condition occurs, is also shifted according to temperature, as shown in Figure 7.

The output is LOW when input pulse width between 39 ns and 58 ns is provided to input pin.

Figure 6. No Output Operating Waveform

Figure 7. No Output Range According by Temperature
2.3. Abnormal Output Operating Condition

The output of HVIC is latched up when the input pulse width between 19 ns and 37 ns is extremely short.

The pulse generator cannot generate a RESET pulse when input pulse width is extremely short, while SET is generated.

The falling edge of input is filtered by an internal parasitic circuit in case of extremely short pulse width; the output of HVIC is latched up, as shown in Figure 8 and Figure 9.

Pulse width of 24 ns at 25°C causes abnormal output condition, as shown in Figure 9. Output is turned off by the next input pulse. Pulse width of around 24 ns is the boundary line of abnormal output operating condition.

In half-bridge topology, a short-circuit condition can occur that leads to shoot-through when HO and LO are turned on at the same time. This failure mode should be taken into consideration in all mission-critical designs. Short pulse width abnormal condition is shifted according to temperature, as shown in Figure 10. Because the RC filter constant is changed if R_{ON} of the internal MOSFET is increased according to temperature, a minimum short pulse width is recommended to avoid malfunction.

Figure 10. Abnormal Output Range by Temperature

Minimum short pulse width is around 60 ns from -40 to 125°C. Taking tolerance of the device into account with 40% margin results in a recommend minimum pulse width as below:

- Minimum pulse width: 54.5 ns at 125°C x 1.4 times = around 77 ns.
- Recommended minimum pulse width is 77 ns from -40 to 125°C.

3. Asynchronous Gating Issues

In some applications, an unwanted short pulse can be generated by the external circuit and cause potential failure modes in the HVIC.

If the source of the PWM signal is a free-running generator (e.g., voltage-controlled PWM or similar concept), as shown in the Figure 11, HIN could be the sort pulse at certain times in the PWM cycle, as shown in the Figure 12.

An external AND gate can cause a short pulse on both the rising and falling edges because the ENABLE signal is not synchronized with the PWM signal. In this case, the solution is to generate the PWM with an MCU with internal hardware with a synchronous ON/OFF feature.

Figure 11. Asynchronous Gating Diagram

Because this is an issue even when using gate driver products with a built-in enable pin, the PWM should be OFF before changing the status of the enable pin.
4. Conclusion

This application note discusses operation and potential failure modes of HVIC gate drivers. A minimum pulse width is recommended to prevent abnormal conditions.

A short pulse-width test circuit and pulse width waveform are shown in Figure 13. The timing diagram in Figure 14 shows latch-up and missing output range from 25°C to 125°C temperature.

Normal output signal occurs from 60 ns at 125°C. Take the worst-case into consideration and give 40% margin for minimum pulse width. Minimum Pulse Width: 54.5 ns at 125°C x 1.4 times = around 77 ns.

The best solution to address minimum short pulse width issues is determined by the requirements of each application. Each HVIC minimum short pulse width limit is different because internal circuit and layout are different.

For example; if the HVIC has half-bridge structure with one input (e.g., FAN7393), recommended minimum short pulse width should be 30% longer than dead time. In this case, effective short pulse width can be counted after it exceeds the dead time specified in the datasheet (refer to Table 1).

<table>
<thead>
<tr>
<th>Feature</th>
<th>Recommended Min. Short Pulse Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Channel</td>
<td>Output Channel</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes:
1. DT is dead time controlled by external resistor, which is referenced to typical value specified in datasheet.
2. 1.3 x DT reflects temperature dependency and the variation between setting and real dead time.
3. Some HVIC have built-in advanced input filter to prevent potential failure mode regarding short pulse input.

For more details, please refer to the corresponding HVIC datasheet. Minimum pulse time depends on internal parasitic RC time constants.

References

[1] AN-6076 — Design and Application Guide of bootstrap Circuit for High-Voltage Gate Driver IC

Related Datasheets

FAN7080 — GF085 FAN7080, GF085 Half-Bridge Gate Driver
FAN7190 — F085 High-Current, High & Low-Side, Gate-Drive IC
FAN7361 — High-Side Gate-Drive IC
FAN73611 — High-Side Gate-Drive IC
FAN7362 — High-Side Gate-Drive IC
FAN7371 — High-Current, High-Side Gate-Drive IC
FAN73711 — High-Current, High-Side Gate-Drive IC
FAN7380 — Half-Bridge Gate-Driver IC
FAN7382 — High & Low-Side Gate-Driver IC
FAN7383 — Half-Bridge Gate-Driver IC
FAN73832 — Half-Bridge Gate- Driver IC
FAN73833 — Half-Bridge Gate- Driver IC
FAN7384 — Half-Bridge Gate- Driver IC
FAN7385 — Dual-Channel High-Side Gate- Driver IC
FAN7388 — 3-Phase Half-Bridge Gate- Driver IC
FAN7390 — High-Current, High & Low-Side Gate- Driver IC
FAN7390A — High-Current, High & Low-Side Gate- Driver IC
FAN73901 — High & Low-Side Gate- Driver IC
FAN7392 — High-Current, High & Low-Side Gate- Driver IC
FAN7393 — Half-Bridge Gate- Driver IC
FAN7393A — Half-Bridge Gate- Driver IC
FAN73932 — Half-Bridge Gate- Driver IC
FAN73933 — Half-Bridge Gate- Driver IC
FAN7842 — High & Low-Side Gate- Driver IC
FAN7888 — 3-Phase Half-Bridge Gate- Driver IC

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.