AN-9091
Boost PFC Inductor Design Guide for PFC SPM® Series

System Configurations

The block diagram in Figure 1 shows PFC SPM® 3 series ver.2, FPAB20BH60B, used in a boost Power Factor Correction (PFC) topology. The inductor (L) is located between pin 24 and pin 25 of the FPAB20BH60B on the boost PFC SPM evaluation board. Inductor design is crucial to achieving the objective of power factor correction. It should be designed optimally to pass the harmonic guideline without increasing the system cost. Table 1 shows typical operating conditions of the FPAB20BH60B evaluation board under test.

![Block Diagram of Boost PFC SPM Evaluation Board](image)

Table 1. Typical Operating Conditions

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Switching Frequency</td>
<td>f</td>
<td>22</td>
<td>kHz</td>
</tr>
<tr>
<td>2</td>
<td>Normal Input Voltage</td>
<td>V_{IN}</td>
<td>220</td>
<td>V_{RMS}</td>
</tr>
<tr>
<td>3</td>
<td>Output Maximum Power</td>
<td>P_O</td>
<td>2200</td>
<td>W</td>
</tr>
<tr>
<td>4</td>
<td>Nominal Output Voltage</td>
<td>V_{DCOUT}</td>
<td>390</td>
<td>V_{DC}</td>
</tr>
</tbody>
</table>
Calculation of Inductance L

The following equation is used to calculate the inductance value (L) of the inductor. It is obtained from ripple current by the inductor located between the AC input and the DC link voltage. Please refer to AN-42047.

\[
\Delta I_{L, p} = \frac{V_{\text{IN}} - V_{\text{OUTDC}}}{V_{\text{OUTDC}}} \cdot \frac{V_{\text{OUTDC}}}{V_{\text{IN}}} = \frac{1}{1 - D}
\]

\[
\Delta I_{L, p} = \frac{V_{\text{OUTDC}}}{L} \cdot \frac{V_{\text{OUTDC}}}{V_{\text{IN}}}
\]

where:

\(\Delta I_{L, p} \): Peak to peak current of PFC inductor;
\(V_{\text{IN}} \): Input AC voltage (Vrms);
\(V_{\text{OUTDC}} \): DC link Voltage (V);
\(f \): Switching frequency (Hz); and
\(L \): Inductance of PFC inductor (H).

Assuming that \(f = 22 \text{ kHz} \), \(V_{\text{OUTDC}} = 390 \text{ V}_{\text{DC}} \), \(\Delta I_{L, p} = 4.0 \text{ A} \), it’s possible to calculate inductance L as follows:

\[
L = \frac{V_{\text{OUTDC}}}{4 \times f \times \Delta I_{L, p}} = \frac{390 \text{ V}_{\text{DC}}}{22 \times 10^3 \times 4.0} = 1.108 \text{ mH}
\]

Selection of Wire Diameter

In the operating conditions of Table 1, the rated output power is 2.4 kW and rated voltage of AC input is 220 VAC. Obtain the maximum input current as:

\[
I_{\text{AC, max}} = \frac{2.2 \text{ kW}}{220 \text{ V}_{\text{AC}}} = 10.0 \text{ Arms}
\]

Assuming that the rms current per square mm of copper wire is 5 [A/mm²], the area and diameter of wire are calculated as follows:

\[
Aw = I_{\text{AC, max}} / 5 = 10.0 \text{ Arms} / 5 = 2.0 \text{ mm}^2
\]

\[
\text{Radius of wire} = \text{SQRT}(Aw / 3.14) = \text{SQRT}(2.0 / 3.14) = 0.80 \text{[mm]}
\]

From this, 2.0 mm-diameter copper wire with was chosen.

Core Selection

There are many things to consider when choosing a core: core material, core permeability, effective cross-section area (cm²), magnetic path length (cm), and nominal inductance (nH/N²). For performance, a Mega Flux® core was selected.

Core: CK740060C

Magnetic Path Length \(l = 18.38 \text{ cm} = 183.8 \text{ mm} \)

Cross Section Area A

\[
A = 5.04 \text{ cm}^2 = 50.4 \text{ mm}^2
\]

Initial permeability \(\mu = 60 \times 4 \times 3.14 \times 10^{-10} (\text{H/mm}) \) at 25 kHz

Material Properties

- Chemical composition: Fe – Si alloy
- Saturation flux density: 16.000 Gauss
- Curie temperature: 550°C
- Initial permeability: 60 μ ±12%, Measured at 25 kHz, 1 V, and 0 A DC

Dimensions

Magnetic Dimensions

- Magnetic Path Length: 18.38 cm
- Cross Section Area: 5.04 cm²

Physical Dimensions (Case)

- OD: 79.50 sm (Maximum)
- ID: 41.14 cm (Minimum)
- HT: 55.0 cm (Maximum)

Case

- Composition: PBT (POLY BUTHYLENE TERPHTALATE)
- Maker: KOLON
- UL FLAME CLASS & FILE NO: UL 94-VO, E88499

Figure 2. Specification of the Selected Toroidal Core: CK740060C
Calculation of Wire Turn Number

A boost PFC inductor with a toroidal core and its wiring is shown in Figure 4.

![Figure 4. Wiring of Boost PFC SPM Inductor with Toroidal Core](image)

In case of inductor, calculate the turn number (N) of each wire using the following equation and referring to website: http://www.chang sung.com:

\[
L = \frac{0.4\pi\mu N^2 A \times 10^{-2}}{1} \tag{11}
\]

From the core parameters in Equations (8) - (10), and (11), \(N \) is calculated as follows:

\[
N = \text{SQRT}(\frac{1.108\pi H \times 183.9}{(60 \times 4 \times 3.14 \times 1e - 10 / H \times 504)}) = 74 \text{turn} \tag{12}
\]

From this, choose a turn number above the obtained 74 turns. 74 turns of wire was selected as the final turn number of the boost PFC SPM® inductor.
Implementation of PFC Inductor

Figure 5. Top View of Inductor

Figure 6. Copper Wire Width (2.01 mm)

Figure 7. Inductance of Inductor (0.98 mH)

According to calculation, the selected copper wire is 2.0 mm and inductance is 1.1 mH. Actual values were copper wire 2.01 mm and inductance 0.98 mH.

Design Verification through Test

Figure 8. Full Load Test Results (at 9.69 Arms)

It was verified that the maximum ripple current of inductor current is about $4 \Delta I_{PK,PK}$, which is similar to the assumption of $\Delta I_{LP,F}$ in Equation (3).

References

AN-42047 — Power Factor Correction (PFC) Basics
AN-6982 — Power Factor Correction Converter Design with FAN6982
Magnetic Powder Cores: http://www.changsung.com/
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.