AN-9757
Determination of Maximum Current Rating for Low RDS\textsubscript{ON} DPAK and D2PAK MOSFETs

Introduction
A discrete transistor’s current capability is limited by one of three factors; die temperature (RDS\textsubscript{ON}), wire-bond temperature, or source lead temperature. As silicon resistance declines, the maximum current limit is moving from the die to the package. This application note discusses a measurement technique used to determine a maximum current rating for low-RDS\textsubscript{ON} DPAK and D2PAK MOSFET’s. Equation (1) determines the RDS\textsubscript{ON} limited maximum drain current for a MOSFET. The current limit is wire-bond or lead limited if this current is greater than the current that produces a bond-wire or lead temperature greater than the decomposition temperature of the mold compound. This temperature is around 200-220°C for most mold compounds. Note that this is the limit where immediate package damage occurs. A guard band needs to be added to ensure reliable operation.

Equation (1) determines the theoretical maximum current based on die temperature with an infinite heat sink:

\[
I_D(\text{max}) = \sqrt{\frac{T_J - T_C}{R_{DS(ON)} * R_{thC}}} \tag{1}
\]

where \(T_J\) is device maximum junction temperature; \(T_C\) is case temperature; \(R_{thC}\) is the thermal resistance from junction to case; and RDS\textsubscript{ON} is the maximum device on-resistance at the maximum junction temperature.

The RDS\textsubscript{ON} limit is defined by the total thermal resistance from junction to ambient. Wire-bond limit is determined by the wire-bond thickness and quantity, while source-lead limit is defined by the dimensions of the source lead and the heat sink capability of the source-lead contact.

Objective
Package current limitations for DPAK and D2PAK with low RDS\textsubscript{ON} is source-lead or wire-bond temperature. This measurement technique establishes a practical upper limit for drain current based on the temperature of the source lead as the limiting factor.

Setup
The basic setup in Figure 1 uses a copper block 6 x 6 x 1 inches. The block was machined into three pieces, as shown in Figure 1. Teflon was used to electrically isolate the block sections from each other. Custom copper pieces clamp the gate and source leads to the copper block (see Figure 1). A commercial clamp was used to clamp the body of the device for drain contact. Mylar was used to isolate the copper from the hot or cold plate.
Summary

The clamped source-lead thermal resistance variation is dependent on the clamping location and pressure. Conductive thermal grease was used on the drain and source to produce consistent device temperatures. Clamping the source lead to the large copper block allows the maximum current to be obtained because the source-lead temperature is the limiting factor. The thermal characteristics of the source lead connection determine the maximum current limit if the drain heat sink is adequate. Measuring source-lead temperature versus drain current in the application provides a method for determining the maximum current. Maximum source-lead temperature is limited by the mold compound or PCB decomposition temperature.

A thermocouple was used to measure source-lead temperature and produced consistent results. Thermocouple placement was on the top of the source lead against the package with a small amount of thermal grease. This point was the highest source lead temperature that could be measured as it was as far as possible from the copper block heat sink.

A thermocouple was not placed below the drain, so block temperature was estimated using a thermocouple to measure temperature of block adjacent to drain, approximately at the midpoint of body of device on source side.

Example 1 — TO-263 (D2PAK)
The FDB9403_F085 is a package-limited device, as shown by the following calculations. Maximum on resistance is specified at 1.96 mΩ at Tj = 175°C. RθJC is specified as 0.43°C/W. Using these numbers in Equation (1), the theoretical die-limited maximum drain currents for an infinite heat sink are 465 A and 360 A, respectively, for ambient temperatures of 25°C and 85°C. Clearly, with an infinite heat sink, this part would be limited by the bond wires or the lead frame. Mold compound decomposition temperature for this part is 200°C with a maximum mold compound safe operating temperature of 180°C. Note that the maximum ratings are the same as the D²PAK package. The source lead of the DPAK is smaller and has less resistance, so the temperature versus current is similar to the D²PAK.

FDB9403_F085 Current-Limit Summary
RθJC Limit with Infinite Heat Sink (Calculated):
- To 25°C infinite heat sink: 465 A
- To 85°C infinite heat sink: 360 A

RθJC Limit with 1in² 2 oz. Copper Heat Sink (Calculated):
- To 25°C w/1in² 2 oz. Copper heat sink: 40.8 A
- To 85°C w/1in² 2 oz. Copper heat sink: 31.6 A

Note:
1. A heat sink of 1in² of 2 oz copper limits maximum current of this device to less than wire-bond or source-lead limits.
 - Wire-bond limit: (3) x 20 mil: 132 A

Source Lead Temperature Limit (Measured):
- Source lead 180°C limit: 170 A (T_A = 25°C)
- Source lead 180°C limit: 110 A* (T_A = 85°C)

Estimate from measured curves at T_A = 25°C.

Example 2 TO-252 (DPAK)
The FDB9407_F085 is a package-limited device, as shown by the following calculations. Maximum on resistance is specified at 3.22 mΩ at Tj = 175°C. RθJC is specified as 0.66°C/W. Using these numbers in Equation (1), the theoretical die-limited maximum drain currents for an infinite heat sink are 307 A and 206 A, respectively, for ambient temperatures of 25°C and 85°C. Clearly, with an infinite heat sink, this part would be limited by the bond wires or the lead frame. Mold compound decomposition temperature for this part is 200°C, with a maximum mold compound safe operating temperature of 180°C.

FDD9407_F085 Current Limit Summary
RθJC Limit with Infinite Heat Sink (Calculated):
- To 25°C infinite heat sink: 307 A
- To 85°C infinite heat sink: 206 A

RθJC Limit with 1in² 2 oz. Copper Heat Sink (Calculated):
- To 25°C w/1in² 2oz. Copper Heat Sink: 29.9 A
- To 85°C w/1in² 2oz. Copper Heat Sink: 23.2 A

Note:
2. A heat sink of 1in² of 2 oz copper limits maximum current of this device to less than wire-bond or source-lead limits.
 - Wire-bond limit: (2) x 20 mil: 88 A

Source Lead Temperature Limit (Measured):
- Source lead 180°C limit: 170 A (T_A = 25°C)
- Source lead 180°C limit: 110 A* (T_A = 85°C)

Estimate from measured curves at T_A = 25°C.

Related Datasheet
FDB9403_F085 N-Channel Power Trench® MOSFET 40 V, 110 A, 1.2 mΩ
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.