Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
FAN4010 High-Side Current Sensor

Features at +5 V
- Low Cost, Accurate, High-Side Current Sensing
- Output Voltage Scaling
- Up to 2.5 V Sense Voltage
- 2 V to 6 V Supply Range
- 2 μA Typical Offset Current
- 3.5 μA Quiescent Current
- -0.2% Accuracy
- 6-Lead MicroPak™ MLP Package

Applications Battery Chargers
- Battery Chargers
- Smart Battery Packs
- DC Motor Control
- Over-Current Monitor
- Power Management
- Programmable Current Source

Description
The FAN4010 is a high-side current sense amplifier designed for battery-powered systems. Using the FAN4010 for high-side power-line monitoring does not interfere with the battery charger’s ground path. The FAN4010 is designed for portable PCs, cellular phones, and other portable systems where battery / DC power-line monitoring is critical.

To provide a high level of flexibility, the FAN4010 functions with an external sense resistor to set the range of load current to be monitored. It has a current output that can be converted to a ground-referred voltage with a single resistor, accommodating a wide range of battery voltages and currents. The FAN4010 features allow it to be used for gas gauging as well as uni-directional or bi-directional current monitoring.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Operating Temperature Range</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN4010IL6X</td>
<td>-40°C to +85°C</td>
<td>PX</td>
<td>6-Lead, Molded Leadless Package (MLP)</td>
<td>Tape & Reel</td>
</tr>
<tr>
<td>FAN4010IL6X_F113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Legacy product number; please order FAN4010IL6X for new designs.
2. All packages are lead free per JEDEC: J-STD-020B standard.
3. Moisture sensitivity level for all parts is MSL-1.

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.
Block Diagram and Typical Circuit

Figure 1. Functional Block Diagram

Figure 2. Typical Circuit

Pin Configuration

Figure 3. Pin Assignment (Top Through View)

Pin Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4</td>
<td>NC</td>
<td>No Connect; leave pin floating</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>IOUT</td>
<td>Output Current, proportional to $\frac{V_{IN}}{V_{LOAD}}$</td>
</tr>
<tr>
<td>1</td>
<td>V_IN</td>
<td>Input Voltage, Supply Voltage</td>
</tr>
<tr>
<td>6</td>
<td>Load</td>
<td>Connection to load or battery</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_S</td>
<td>Supply Voltage</td>
<td>0</td>
<td>6.3</td>
<td>6.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input Voltage Range</td>
<td>0</td>
<td>6.3</td>
<td>6.3</td>
<td>V</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction Temperature</td>
<td></td>
<td></td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-65</td>
<td></td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Reflow Temperature, Soldering</td>
<td></td>
<td></td>
<td>+260</td>
<td>°C</td>
</tr>
<tr>
<td>Θ_{JA}</td>
<td>Package Thermal Resistance$^{(4)}$</td>
<td></td>
<td>456</td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge Protection</td>
<td></td>
<td>5000</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note:
4. Package thermal resistance (Θ_{JA}), JEDEC standard, multi-layer test boards, still air.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A</td>
<td>Operating Temperature Range</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>V_S</td>
<td>Supply Voltage Range</td>
<td>2</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>2</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>V_{SENSE}</td>
<td>Sensor Voltage Range, (V_{SENSE} = V_{IN} \cdot V_{LOAD}, R_{OUT} = 0 \ \Omega)</td>
<td>2.5</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>
Electrical Characteristics at +5 V

$T_A = 25^\circ C$, $V_S = V_{IN} = 5$ V, $R_{OUT} = 100$ Ω, $R_{SENSE} = 100$ Ω, unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{WSS}</td>
<td>Small Signal Bandwidth</td>
<td>$P_{IN}=-40$ dBm(5), $V_{SENSE}=10$ mV</td>
<td>600</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>B_{WLS}</td>
<td>Large Signal Bandwidth</td>
<td>$P_{IN}=-20$ dBm(6), $V_{SENSE}=100$ mV</td>
<td>2</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input Voltage Range</td>
<td>$V_{IN}=V_S$</td>
<td>2</td>
<td>6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>Output Current(7,8)</td>
<td>$V_{SENSE}=0$ mV</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SENSE}=10$ mV</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SENSE}=100$ mV</td>
<td>0.975</td>
<td>1.000</td>
<td>1.025</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SENSE}=200$ mV</td>
<td>1.95</td>
<td>2.00</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SENSE}=1$ V</td>
<td>9.7</td>
<td>10.0</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current(7)</td>
<td>$V_{SENSE}=0$ V, GND Pin Current</td>
<td>3.5</td>
<td>5.0</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{SENSE}</td>
<td>Load Pin Input Current</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>nA</td>
</tr>
<tr>
<td>A_{CY}</td>
<td>Accuracy</td>
<td>$R_{SENSE}=100$ Ω, $R_{SENSE}=200$ mV(7)</td>
<td>-2.5</td>
<td>-0.2</td>
<td>2.5</td>
<td>%</td>
</tr>
<tr>
<td>G_m</td>
<td>Transconductance</td>
<td>I_{OUT}/V_{SENSE}</td>
<td>10000</td>
<td></td>
<td></td>
<td>µA/V</td>
</tr>
</tbody>
</table>

Notes:
5. -40 dBm = 6.3 mVpp into 50 Ω.
6. -20 dBm = 63 mVpp into 50 Ω.
7. 100% tested at 25°C.
8. Includes input offset voltage contribution.
Typical Performance Characteristics

\(T_A = 25°C, \ V_S = \ V_{IN} = 5 \text{ V}, \ R_{OUT} = 100 \ \Omega, \ R_{SENSE} = 100 \ \Omega, \) unless otherwise noted.

Figure 4. \(V_{SENSE} \) vs. Output Current

Figure 5. Output Current Error vs. \(V_{SENSE} \)

Figure 6. Output Current vs. Temperature

Figure 7. Frequency Response

Figure 8. Transfer Characteristics

Figure 9. Transfer Characteristics
Typical Performance Characteristics (Continued)

$T_A = 25^\circ$C, $V_S = V_{IN} = 5$ V, $R_{OUT} = 100$ Ω, $R_{SENSE} = 100$ Ω, unless otherwise noted.

Figure 10. CMRR vs. Frequency

Figure 11. V_{IN} vs. Output Current Error

Figure 12. Supply Current vs. V_{SENSE}
Application Information
Detailed Description
The FAN4010 measures the voltage drop (V_{SENSE}) across an external sense resistor in the high-voltage side of the circuit. V_{SENSE} is converted to a linear current via an internal operational amplifier and precision 100 Ω resistor. The value of this current is $V_{SENSE}/100$ Ω (internal). Output current flows from the I_{OUT} pin to an external resistor R_{OUT} to generate an output voltage proportional to the current flowing to the load.

Use the following equations to scale a load current to an output voltage:

$$V_{SENSE} = I_{LOAD} \cdot R_{SENSE}$$ \hspace{1cm} (1)

$$V_{OUT} = 0.01 \times V_{SENSE} \times R_{OUT}$$ \hspace{1cm} (2)

Selecting R_{SENSE}
Selection of R_{SENSE} is a balance between desired accuracy and allowable voltage loss. Although the FAN4010 is optimized for high accuracy with low V_{SENSE} values, a larger R_{SENSE} value provides additional accuracy. However, larger values of R_{SENSE} create a larger voltage drop, reducing the effective voltage available to the load. This can be troublesome in low-voltage applications. Because of this, the maximum expected load current and allowable load voltage should be well understood. Although higher values of V_{SENSE} can be used, R_{SENSE} should be chosen to satisfy the following condition:

$$10\text{mV} < V_{SENSE} < 200\text{mV}$$ \hspace{1cm} (3)

For low-cost applications where accuracy is not as important, a portion of the printed circuit board (PCB) trace can be used as an R_{SENSE} resistor. Figure 14 shows an example of this configuration. The resistivity of a 0.1-inch wide trace of two-ounce copper is about 30 mΩ/ft. Unfortunately, the resistance temperature coefficient is relatively large (approximately 0.4%/°C), so systems with a wide temperature range may need to compensate for this effect. Additionally, self heating due to load currents introduces a nonlinearity error. Care must be taken not to exceed the maximum power dissipation of the copper trace.

Selecting R_{OUT}
R_{OUT} can be chosen to obtain the output voltage range required for the particular downstream application. For example, if the output of the FAN4010 is intended to drive an analog-to-digital convertor (ADC), R_{OUT} should be chosen such that the expected full-scale output current produces an input voltage that matches the input range of the ADC. For instance, if expected loading current ranges from 0 to 1 A, an R_{SENSE} resistor of 1 Ω produces an output current that ranges from 0 to 10 mA. If the input voltage range of the ADC is 0 to 2 V, an R_{OUT} value of 200 Ω should be used. The input voltage and full-scale output current ($I_{OUT,FS}$) needs to be taken into account when setting up the output range. To ensure sufficient operating headroom, choose:

$$(R_{OUT} \cdot I_{OUT,FS}) \text{ such that } V_{IN} - V_{SENSE} - (R_{OUT} \cdot I_{OUT,FS}) > 1.6V$$ \hspace{1cm} (4)

Output current accuracy for the recommended V_{SENSE} between 10 mV and 200 mV are typically better than 1%. As a result, the absolute output voltage accuracy is dependent on the precision of the output resistor.

Make sure the input impedance of the circuit connected to V_{OUT} is much higher than R_{OUT} to ensure accurate V_{OUT} values.

Since the FAN4010 provides a trans-impedance function, it is suitable for applications involving current rather than voltage sensing.
Physical Dimensions

Figure 15. 6-Lead MicroPak™ Molded Leadless Package (MLP)
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AcuPower™
Avinta™
AX-CAP™
BitSC™
Build It Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPPEED™
Dual Cool™
EcoSPARK™
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST™
FastVCore™
FETBench™
FPS™
F-FPGA™
FRFET™
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS® e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionGrid™
MV™
mWSaver™
OptiFlex™
OPTOLOGIC™
OPToplanar™
PowerTrench™
PowerXR™
Programmable Active Droop™
QFET™
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions For Your Success™
SPM™
STEALTH™
SuperFET™
SuperQOT™
SuperQOT™-6
SuperQOT™-8
SuperMOS™
SyncFET™
Sync-Lock™
SYSTEM GENERAL™
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic™
TINYQOTO™
TinyPower™
TinyPWM™
TinyWire™
TranSC™
TriFault Detected™
TRUECURRENT™
µSerDes™
UHC™
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
Xsens™
仙童™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HERIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products purchased from Unauthorized Sources are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

Rev. 7/2
NOTES:

1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
2. DIMENSIONS ARE IN MILLIMETERS
3. DRAWING CONFORMS TO ASME Y14.5M-2009
4. LANDPATTERN RECOMMENDATION PER FSC
5. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY OTHER LINE IN THE MARK CODE LAYOUT.
6. FILENAME AND REVISION: MAC06AREV6