FDC658AP

Single P-Channel Logic Level PowerTrench® MOSFET

-30V, -4A, 50mΩ

General Description

This P-Channel Logic Level MOSFET is produced using Fairchild's advanced PowerTrench process. It has been optimized for battery power management applications.

Applications

- Battery management
- Load switch
- Battery protection
- DC/DC conversion

Features

- Max \(r_{DS(on)}\) = 50 mΩ @ \(V_{GS} = -10\) V, \(I_D = -4A\)
- Max \(r_{DS(on)}\) = 75 mΩ @ \(V_{GS} = -4.5\) V, \(I_D = -3.4A\)
- Low Gate Charge
- High performance trench technology for extremely low \(r_{DS(on)}\)
- RoHS Compliant

Absolute Maximum Ratings \(T_A = 25°C\) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DS})</td>
<td>Drain-Source Voltage</td>
<td>-30</td>
<td>V</td>
</tr>
<tr>
<td>(V_{GS})</td>
<td>Gate-Source Voltage</td>
<td>±25</td>
<td>V</td>
</tr>
<tr>
<td>(I_D)</td>
<td>Drain Current - Continuous</td>
<td>-4</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>- Pulsed</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>(P_D)</td>
<td>Maximum Power dissipation</td>
<td>1.6</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>(Note 1a)</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(T_J, T_{STG})</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JJA})</td>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>(Note 1a)</td>
<td>78</td>
</tr>
<tr>
<td>(R_{JJC})</td>
<td>Thermal Resistance, Junction-to-Case</td>
<td>(Note 1)</td>
<td>30</td>
</tr>
</tbody>
</table>

Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>.58A</td>
<td>FDC658AP</td>
<td>7inch</td>
<td>8mm</td>
<td>3000 units</td>
</tr>
</tbody>
</table>
Electrical Characteristics $T_J = 25^\circ\text{C}$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_{DSS}</td>
<td>Drain-Source Breakdown Voltage</td>
<td>$I_D = -250\mu$A, $V_{GS} = 0$V</td>
<td>-30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ΔBV_{DSS}</td>
<td>Breakdown Voltage Temperature Coefficient</td>
<td>$I_D = -250\mu$A, Referenced to 25°C</td>
<td>-22</td>
<td>mV/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>Zero Gate Voltage Drain Current</td>
<td>$V_{GS} = 0$V, $V_{DS} = -24$V</td>
<td>-1</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>Gate-Body Leakage</td>
<td>$V_{GS} = \pm25$V, $V_{DS} = 0$V</td>
<td>±100</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Off Characteristics

- **$V_{GS(TH)}$** Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = -250\mu$A -1, -1.8, -3 V
- **$\Delta V_{GS(TH)}$** Gate Threshold Voltage Temperature Coefficient $I_D = -250\mu$A, Referenced to 25°C 4, 50 mV/°C
- **$r_{DS(on)}$** Static Drain-Source On-Resistance $I_D = -4$A, $V_{GS} = -10$V 44, 50 mΩ
- **$I_D(ON)$** On-State Drain Current $V_{GS} = -10$V, $V_{DS} = -5$V 20 A
- **g_{FS}** Forward Transconductance $I_D = -4$A, $V_{DS} = -5$V 8.4 S

Dynamic Characteristics

- **C_{iss}** Input Capacitance $V_{DS} = -15$V, $V_{GS} = 0$V, $f = 1$MHz 470, 680 pF
- **C_{oss}** Output Capacitance $f = 1$MHz 126, 180 pF
- **C_{rss}** Reverse Transfer Capacitance 61, 90 pF

Switching Characteristics (Note 2)

- **$t_{d(on)}$** Turn-On Delay Time $V_{DD} = -15$V, $I_D = -1$A 7, 14 ns
- **t_r** Turn-On Rise Time $V_{GS} = -10$V, $R_{GEN} = 6$Ω 12, 22 ns
- **$t_{d(off)}$** Turn-Off Delay Time 16, 29 ns
- **t_f** Turn-Off Fall Time 6, 12 ns
- **Q_g** Total Gate Charge $V_{DS} = -15$V, $I_D = -4$A, $V_{GS} = -5$V 6, 8.1 nC
- **Q_{gs}** Gate-Source Charge $V_{GS} = -15$V, $I_D = -4$A, $V_{DS} = -5$V 2.1 nC
- **Q_{gd}** Gate-Drain Charge 2 nC

Drain-Source Diode Characteristics and Maximum Ratings

- **I_S** Maximum Continuous Drain-Source Diode Forward Current -1.3 A
- **V_{SD}** Drain-Source Diode Forward Voltage $V_{GS} = 0$V, $I_S = -1.3$ A (Note 2) -0.77, -1.2 V

Notes:

1. R_{JUC} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{JUC} is guaranteed by design while R_{VCA} is determined by the user’s board design.

2. Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%

Scale 1: 1 on letter size paper

- a) 78°C/W when mounted on a 1 in² pad of 2 oz copper
- b) 156°C/W when mounted on a minimum pad of 2 oz copper
Typical Characteristics

Figure 1. On-Region Characteristics

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

Figure 3. Normalized On-Resistance vs Junction Temperature

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs Source Current
Typical Characteristics

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

Figure 9. Forward Bias Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

Figure 11. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AttitudeEngine™
Awinda™
AX-CAP™
BiSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK™
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET®
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionGrid™
MTI™
MTX™
MvN™
mWSaver™
OptoHIT™
OPTOLOGIC®
OPTOPLANAR®
Power Supply WebDesigner™
PowerTrench™
PowerXS™
Programmable Active Droop™
GFET™
QS™
Quiet Series™
RapidConfigure™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET™
SuperSOT-3
SuperSOT-8
Supreme MOS™
SyncFET™
Sync-Lock™

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE
Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer’s use of this product is subject to agreement of this Authorized Use Policy. In the event of an unauthorized use of Fairchild’s product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be reasonably used to meet any liability arising out of the application or use of any product. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer’s use of this product is subject to agreement of this Authorized Use Policy. In the event of an unauthorized use of Fairchild’s product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild’s Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under the Terms of Use. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>