FDD18N20LZ
N-Channel UniFET™ MOSFET
200 V, 16 A, 125 mΩ

Features
• $R_{DS(on)} = 125$ mΩ (Typ.) @ $V_{GS} = 10$ V, $I_D = 8$ A
• Low Gate Charge (Typ. 30 nC)
• Low C_{rss} (Typ. 25 pF)
• 100% Avalanche Tested
• Improved dv/dt Capability
• ESD Improved Capability
• RoHS Compliant

Applications
• LED TV
• Consumer Appliances
• Uninterruptible Power Supply

Description
UniFET™ MOSFET is Fairchild Semiconductor’s high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings $T_C = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FDD18N20LZ</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain to Source Voltage</td>
<td>200</td>
<td>V</td>
</tr>
<tr>
<td>V_{GSS}</td>
<td>Gate to Source Voltage</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>I_{DRM}</td>
<td>Drain Current, -Pulsed (Note 1)</td>
<td>64</td>
<td>A</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single Pulsed Avalanche Energy (Note 2)</td>
<td>320</td>
<td>mJ</td>
</tr>
<tr>
<td>I_{AR}</td>
<td>Avalanche Current (Note 1)</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>E_{AR}</td>
<td>Repetitive Avalanche Energy (Note 1)</td>
<td>8.9</td>
<td>mJ</td>
</tr>
<tr>
<td>dv/dt</td>
<td>Peak Diode Recovery dv/dt (Note 3)</td>
<td>10</td>
<td>V/ns</td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>89</td>
<td>W</td>
</tr>
<tr>
<td>$T_{j,STG}$</td>
<td>Operating and Storage Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_L</td>
<td>Maximum Lead Temperature for Soldering, 1/8” from Case for 5 Seconds.</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>FDD18N20LZ</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUC}</td>
<td>Thermal Resistance, Junction to Case, Max.</td>
<td>1.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JA}</td>
<td>Thermal Resistance, Junction to Ambient, Max.</td>
<td>83</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Top Mark</th>
<th>Package</th>
<th>Packing Method</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDD18N20LZ</td>
<td>FDD18N20LZ</td>
<td>DPAK</td>
<td>Tape and Reel</td>
<td>330 mm</td>
<td>16 mm</td>
<td>2500 units</td>
</tr>
</tbody>
</table>

Electrical Characteristics

$T_C = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BVDSS$</td>
<td>Drain to Source Breakdown Voltage</td>
<td>$I_D = 250 \mu A$, $V_{GS} = 0 V$, $T_J = 25^\circ C$</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>ΔBV_{DSS} / Δ</td>
<td>Breakdown Voltage Temperature Coefficient</td>
<td>$I_D = 250 \mu A$, Referenced to $25^\circ C$</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>$V/\circ C$</td>
</tr>
<tr>
<td>I_D</td>
<td>Zero Gate Voltage Drain Current</td>
<td>$V_{DS} = 200 V$, $V_{GS} = 0 V$</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>I_GS</td>
<td>Gate to Body Leakage Current</td>
<td>$V_{GS} = \pm 16 V$, $V_{DS} = 0 V$</td>
<td>-</td>
<td>-</td>
<td>± 10</td>
<td>μA</td>
</tr>
</tbody>
</table>

Off Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GS(th)}$</td>
<td>Gate Threshold Voltage</td>
<td>$V_{GS} = V_{DS}$, $I_D = 250 \mu A$</td>
<td>1.0</td>
<td>-</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>Static Drain to Source On Resistance</td>
<td>$V_{GS} = 10 V$, $I_D = 8 A$</td>
<td>-</td>
<td>0.10</td>
<td>0.125</td>
<td>Ω</td>
</tr>
<tr>
<td>g_{FS}</td>
<td>Forward Transconductance</td>
<td>$V_{DS} = 20 V$, $I_D = 2 A$</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>S</td>
</tr>
</tbody>
</table>

Dynamic Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{iss}</td>
<td>Input Capacitance</td>
<td>$V_{DS} = 25 V$, $V_{GS} = 0 V$, $f = 1 MHz$</td>
<td>-</td>
<td>1185</td>
<td>1575</td>
<td>pF</td>
</tr>
<tr>
<td>C_{oss}</td>
<td>Output Capacitance</td>
<td></td>
<td>-</td>
<td>190</td>
<td>255</td>
<td>pF</td>
</tr>
<tr>
<td>C_{rss}</td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td>-</td>
<td>25</td>
<td>40</td>
<td>pF</td>
</tr>
<tr>
<td>$Q_{t(0)}$</td>
<td>Total Gate Charge at $10 V$</td>
<td></td>
<td>-</td>
<td>30</td>
<td>40</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{gs}</td>
<td>Gate to Source Gate Charge</td>
<td>$V_{DS} = 200 V$, $I_D = 16 A$</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{gd}</td>
<td>Gate to Drain “Miller” Charge</td>
<td>$V_{GS} = 10 V$</td>
<td>-</td>
<td>8.5</td>
<td>-</td>
<td>nC</td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{on}</td>
<td>Turn-On Delay Time</td>
<td>$V_{DD} = 100 V$, $I_D = 16 A$</td>
<td>-</td>
<td>15</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>Turn-On Rise Time</td>
<td>$V_{GS} = 10 V$, $R_G = 25 \Omega$</td>
<td>-</td>
<td>20</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>t_{off}</td>
<td>Turn-Off Delay Time</td>
<td></td>
<td>-</td>
<td>135</td>
<td>280</td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Turn-Off Fall Time</td>
<td></td>
<td>-</td>
<td>50</td>
<td>110</td>
<td>ns</td>
</tr>
</tbody>
</table>

Drain-Source Diode Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_D</td>
<td>Maximum Continuous Drain to Source Diode Forward Current</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>I_{SM}</td>
<td>Maximum Pulsed Drain to Source Diode Forward Current</td>
<td>-</td>
<td>-</td>
<td>64</td>
<td>A</td>
</tr>
<tr>
<td>V_{SD}</td>
<td>Drain to Source Diode Forward Voltage</td>
<td></td>
<td>-</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>I_{rr}</td>
<td>Reverse Recovery Time</td>
<td></td>
<td>-</td>
<td>105</td>
<td>-</td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>Reverse Recovery Charge</td>
<td></td>
<td>0.4</td>
<td>-</td>
<td>μC</td>
</tr>
</tbody>
</table>

Notes:

1. Repetitive rating: pulse-width limited by maximum junction temperature.
2. $L = 2.5 \text{ mH}$, $I_{SD} = 16 \text{ A}$, $V_{DD} = 50 \text{ V}$, $R_G = 25 \Omega$, starting $T_J = 25^\circ C$.
3. $I_{SD} = 16 \text{ A}$, $dI/dt = 200 \text{ A/\mu s}$, $V_{DD} = BVDSS$, starting $T_J = 25^\circ C$.
4. Essentially independent of operating temperature typical characteristics.
Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

Notes:
1. 250µs Pulse Test
2. TC = 25°C

Notes:
1. VGS = 0V
2. f = 1MHz
Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 11. Transient Thermal Response Curve
Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms
Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

- Driver
- DUT
- VGS (Driver)
- VDS (DUT)
- ISD (DUT)
- I_{FM}, Body Diode Forward Current
- I_{RM}, Body Diode Reverse Current
- di/dt
- Body Diode Recovery dv/dt
- Body Diode

V_{GS} (Driver)

D = \frac{\text{Gate Pulse Width}}{\text{Gate Pulse Period}}

10V

\text{DUT}

\text{Driver}

\text{RG}

\text{Same Type as DUT}

\text{L}

\text{VDD}

\text{IFM, Body Diode Forward Current}

\text{IRM, Body Diode Reverse Current}

\text{Body Diode Recovery dv/dt}

\text{Body Diode}

\text{V_{DS} (DUT)}

\text{V_{DD}}
Figure 16. TO252 (D-PAK), Molded, 3-Lead, Option AA&AB

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-003
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (ii) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

- AccuPower™
- AX-CAP™
- BiSC™
- CrossVOLT™
- CTL™
- Current Transfer Logic™
- DEUXPEED®
- Dual Cool™
- EcoSPARK®
- EfficientMax™
- ESBC™
- FETBench™
- FPS™
- F-PFS™
- FRFET®
- Global Power Resource™
- GreenBridge™
- Green FPS™
- Green FPS™ e-Series™
- Gmax™
- GTO™
- IntelliMAX™
- ISOPLANAR™
- Marking Small Speakers Sound Louder and Better™
- MegaBuck™
- MicroCOUPLER™
- MicroFET™
- MicroPak™
- MicroPak2™
- MillerDrive™
- MotionMax™
- mWSaver®
- OptoHiT™
- OPTOLOGIC®
- OPTOPLANAR®
- PowerTrench®
- PowerXS™
- Programmable Active Drop™
- QFE™
- Quiet Series™
- RapidConfigure™
- Saving our world, 1mW/W/kW at a time™
- SignalWise™
- SmartMax™
- SMART START™
- Solutions for Your Success™
- SPM®
- STEALTH™
- SuperFET®
- SuperSOT™-3
- SuperSOT™-6
- SuperSOT™-8
- SupremOS®
- SyncFET™
- Sync-Lock™
- System™
- TinyBoost™
- TinyBuck®
- TinyCalc™
- TinyLogic®
- TINYOPTO™
- TinyPower™
- TinyPWM™
- TinyWire™
- Tranci™
- TruFault Detect™
- TRUECURRENT™
- UC™
- UHC™
- Ultra FRFET™
- UniFET™
- VCX™
- VisualMax™
- VoltagePlus™
- XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.