To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
LM350
3-Terminal 3 A Positive Adjustable Regulator

Features
• Output Adjustable Between 1.2 V and 33 V
• Guaranteed 3 A Output Current
• Internal Thermal Overload Protection
• Load Regulation (Typical: 0.1%)
• Line Regulation (Typical: 0.015%/V)
• Internal Short-Circuit Current Limit
• Output Transistor Safe-Area Compensation

Description
The LM350 is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 3.0 A over an output voltage range of 1.2 V to 33 V.

Ordering Information

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Marking</th>
<th>Package</th>
<th>Packing Method</th>
<th>Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM350T</td>
<td>LM350</td>
<td>TO-220 3L (Single Gauge)</td>
<td>Rail</td>
<td>0 to +125°C</td>
</tr>
</tbody>
</table>
Block Diagram

![Block Diagram](image)

Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_I - V_O$</td>
<td>Input-Output Voltage Differential</td>
<td>35</td>
<td>V</td>
</tr>
<tr>
<td>T_{LEAD}</td>
<td>Lead Temperature (Soldering, 10 sec)</td>
<td>300</td>
<td>°C</td>
</tr>
<tr>
<td>T_{OPR}</td>
<td>Operating Temperature Range</td>
<td>0 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature Range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

Values are at $T_A = 25^\circ C$ unless otherwise noted.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>Internally Limited</td>
<td>W</td>
</tr>
</tbody>
</table>
Electrical Characteristics

$V_I - V_O = 5 \text{ V}, \ IO = 1.5 \text{ A}, \ 0^\circ \text{C} \leq T_J \leq +125^\circ \text{C}, \ PD \leq P_{\text{DMAX}}$, unless otherwise specified.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{\text{line}}</td>
<td>Line Regulation$^{(1)}$</td>
<td>$T_A = +25^\circ \text{C}, \ 3 \text{ V} \leq V_I - V_O \leq 35 \text{ V}$</td>
<td>0.015</td>
<td>0.030</td>
<td></td>
<td>%/V</td>
</tr>
<tr>
<td>R_{\text{load}}</td>
<td>Load Regulation$^{(1)}$</td>
<td>$T_A = +25^\circ \text{C}, \ 3 \text{ V} \leq V_I - V_O \leq 35 \text{ V}, \ V_O \leq 5 \text{ V}$</td>
<td>5</td>
<td>25</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = +25^\circ \text{C}, \ 3 \text{ V} \leq V_I - V_O \leq 35 \text{ V}, \ V_O \geq 5 \text{ V}$</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I_{\text{ADJ}}</td>
<td>Adjustment Pin Current</td>
<td>-</td>
<td>50</td>
<td>100</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>ΔI_{\text{ADJ}}</td>
<td>Adjustment Pin Current Change</td>
<td>$3 \text{ V} \leq V_I - V_O \leq 35 \text{ V}$, $10 \text{ mA} \leq I_O \leq 3 \text{ A}, \ PD \leq P_{\text{DMAX}}$</td>
<td>0.2</td>
<td>5.0</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>REG_T</td>
<td>Thermal Regulation</td>
<td>Pulse = 20 ms, $T_A = +25^\circ \text{C}$</td>
<td>0.002</td>
<td></td>
<td></td>
<td>%/W</td>
</tr>
<tr>
<td>V_{\text{REF}}</td>
<td>Reference Voltage</td>
<td>$3 \text{ V} \leq V_I - V_O \leq 35 \text{ V}$, $10 \text{ mA} \leq I_O \leq 3 \text{ A}, \ PD \leq 30 \text{ W}$</td>
<td>1.20</td>
<td>1.25</td>
<td>1.30</td>
<td>V</td>
</tr>
<tr>
<td>R_{\text{line}}</td>
<td>Line Regulation</td>
<td>$3.0 \text{ V} \leq V_I - V_O \leq 35 \text{ V}$</td>
<td>0.02</td>
<td>0.07</td>
<td></td>
<td>%/W</td>
</tr>
<tr>
<td>R_{\text{load}}</td>
<td>Load Regulation</td>
<td>$10 \text{ mA} \leq I_O \leq 3.0 \text{ A}, \ V_O \leq 5.0 \text{ V}$</td>
<td>20</td>
<td>70</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$10 \text{ mA} \leq I_O \leq 3.0 \text{ A}, \ V_O \geq 5.0 \text{ V}$</td>
<td>0.3</td>
<td>1.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>ST_T</td>
<td>Temperature Stability</td>
<td>$T_J = 0^\circ \text{C}$ to $+125^\circ \text{C}$</td>
<td>1.0</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>I_{\text{O(MAX)}}</td>
<td>Maximum Output Current</td>
<td>$V_I - V_O \leq 10 \text{ V}$, $P_D \leq P_{\text{MAX}}$</td>
<td>3.0</td>
<td>4.5</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_I - V_O = 30 \text{ V}$, $P_D \leq P_{\text{MAX}}$</td>
<td>0.25</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{\text{L(MIN)}}</td>
<td>Minimum Load Current</td>
<td>$V_I - V_O = 35 \text{ V}$</td>
<td>3.5</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>V_{N}</td>
<td>RMS Noise, % of V_{OUT}</td>
<td>$10 \text{ Hz} \leq f \leq 10 \text{ kHz}$, $T_A = +25^\circ \text{C}$</td>
<td>0.003</td>
<td></td>
<td></td>
<td>%/V_{O}</td>
</tr>
<tr>
<td>RR</td>
<td>Ripple Rejection</td>
<td>$V_O = 10 \text{ V}, f = 120 \text{ Hz}, \ C_{\text{ADJ}} = 0$</td>
<td>65</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_O = 10 \text{ V}, f = 120 \text{ Hz}, \ C_{\text{ADJ}} = 10 \mu\text{F}$</td>
<td>66</td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>ST</td>
<td>Long-Term Stability</td>
<td>$T_J = +125^\circ \text{C}$</td>
<td>0.3</td>
<td>1</td>
<td></td>
<td>%/1000HR</td>
</tr>
</tbody>
</table>

Note:

1. Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
Typical Performance Characteristics

Figure 2. Load Regulation

Figure 3. Current Limit

Figure 4. Adjustment Pin Current

Figure 5. Dropout Voltage

Figure 6. Temperature Stability

Figure 7. Minimum Load Current
Typical Performance Characteristics (Continued)

Figure 8. Ripple Rejection vs. V_O

Figure 9. Ripple Rejection vs. I_O

Figure 10. Ripple Rejection vs Frequency

Figure 11. Output Impedance

Figure 12. Line Transient Response

Figure 13. Load Transient Response
Typical Application

Figure 14.

Note:
2. CI: CI is required if the regulator is located an appreciable distance from power supply filter.
 CO: Output capacitors in the range of 1 μF to 100 μF of aluminum or tantalum electronic are commonly used to
 provide improved output impedance and rejection of transients.

In operation, the LM350 develops a nominal 1.25 V reference voltage, VREF, between the output and adjustment
terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a
constant current I1 then flows through the output set resistor R2, giving an output voltage of

\[V_O = 1.25 \cdot V(1+R_2/R_1) + I_{ADJ} \cdot R_2 \]

Since IADJ current (less than 100 mA) from the adjustment terminal represents an error term, the LM350 was
designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating
current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the
output, the output voltage will rise. Since the LM350 is a floating regulator, it is only the voltage differential across the
circuit which is important to performance, and operation at high voltage with respect to ground is possible.
Since IADJ is controlled to less than 100 mA, the error associated with this term is negligible in most applications.
Physical Dimensions

Figure 15. TO-220, MOLDED, 3-LEAD, JEDEC VARIATION AB
TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Avinci™
AX-CAP™
BiSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED™
Dual Cool™
EcoSPARK™
EfficientMax™
FSIC™
Fairchild
Fairchild Semiconductor®
FACT Quiet Series
FACT™
FAST™
FastvCore™
FETBench™
FPS™
F-PFS™
FRFET™
Global Power Resource™
GreenBridge™
Green FPS™
Green FPS™ e-Series™
Grun™
GTO™
IntelliMAX™
ISOPLANAR™
Making Small Speakers Sound Louder and Better™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionGrid™
MT1™
MTX™
MN™
mWSaver™
OptoHiT™
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
Saving the world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
Solutions for Your Success™
SPM™
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMICONDUCTOR.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device, system, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the parts.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>