Reference Design RD-402

1. Fairchild Motion SPM® 5 SuperFET® Series

This reference design supports designs using Fairchild’s Motion SPM® 5 SuperFET® series of products. It should be used in conjunction with the SPM 5 SuperFET series datasheets and Fairchild’s technical support team. Please visit Fairchild’s website at http://www.fairchildsemi.com.

<table>
<thead>
<tr>
<th>Application</th>
<th>Fairchild Devices</th>
<th>Input Voltage Range</th>
<th>Typical Power Rating</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Appliance (Refrigerator)</td>
<td>FSB50660SF, FSB50660SFT, FSB50760SF, FSB50760SFT</td>
<td>300~400 V<sub>DC</sub></td>
<td>150 W~200 W</td>
<td>3-Phase Inverter</td>
</tr>
</tbody>
</table>

Key Features

- 600 V $R_{DS(ON)}$=530 mΩ / 700 mΩ (Max.) 3-Phase SuperFET Inverter Bridge, including High Voltage Integrated Circuit (HVIC)
- 3 Divided Negative DC-Link Terminals for Inverter Current-Sensing Application
- HVIC for Gate Driving and Under-Voltage Lockout (UVLO) Protection
- Optimized for Low Electromagnetic Interference
- Embedded Bootstrap Diode in Package
- Integrated Temperature-Sensing Function (Linear Voltage Output by Temperature) in HVIC
- Isolation Voltage Rating of 1500 V_{RMS} for 1 Minute
2. Schematics

Figure 1. Block Diagram of Compressor Driver for Refrigerator
Figure 2. Schematic of Reference Design for 3-Phase Inverter Key Parameter Design
3. **Key Parameter Design**

3.1. **Selection of Bootstrap Capacitance (CBS)**

The bootstrap capacitor can be calculated by:

\[
C_{BS} = \frac{I_{Leak} \times \Delta t}{\Delta V_{BS}}
\]

(1)

where:

- \(\Delta t \) = maximum on pulse width of high-side MOSFET;
- \(\Delta V_{BS} \) = the allowable discharge voltage of the CBS (voltage ripple); and
- \(I_{Leak} \) = maximum discharge current of the CBS.

Normally, \(I_{Leak} \) consist of the following items:

- Gate charge for turning the high-side MOSFET turn on
- Quiescent current to the high-side circuit in the HVIC
- Level-shift charge required by level-shifters in HVIC
- Leakage current in the bootstrap diode
- \(C_{BS} \) capacitor leakage current (ignored for non-electrolytic capacitors)
- Bootstrap diode reverse recovery charge

Practically, 1 mA of \(I_{Leak} \) is recommended (operating \(V_{BS} \) supply current).

Calculation example of \(C_{BS} \):

\[
C_{BS_min} = \frac{I_{Leak} \times \Delta t}{\Delta V_{BS}} = \frac{1mA \times 2.6ms}{0.2V} = 10 \times 10^{-6}
\]

(2)

where:

- \(I_{Leak} = 1 \) mA (recommended value);
- \(\Delta V_{BS} = 0.2 \) V (depends on system);
- \(\Delta t = 2.6 \) ms (depends on system);
- More than 2~3 times \(\rightarrow \) 20~30 \(\mu \)F \(\rightarrow \) standard nominal capacitance 22 \(\mu \)F.
3.2. Initial Charging Sequence for Bootstrap Capacitor

Figure 3 is built-in bootstrap diode I_d-V_f characteristic in FSB50760SF.

The built-in bootstrap diodes of the Motion SPM® 5 SuperFET® series have equivalent resistance characteristic by special I_d-V_f characteristics. Therefore, circuit engineers only need external bootstrap capacitor for bootstrap circuit.

The bootstrap capacitors should be fully charged for the supply voltage of HVIC by the turn-on low-side MOSFET and the gate voltage of the high-side MOSFET; otherwise, the high-side MOSFET is operated in high-dissipation mode. For one bootstrap capacitor (C_BS), when charged initial charging current (I_BS) flows through low-side MOSFET and I BS is approximately 1.0 A. Figure 4 is bootstrap capacitor charging waveform and Figure 5 is bootstrap capacitor charging time by bootstrap capacitor value (t_charge at V_BS=12.0 V).

To charge three bootstrap capacitors at the same time; theoretically, the maximum initial charging current is around 3.0 A. In this case, this I_BS could be lead to a SCP (OCP) error. Therefore, charge bootstrap capacitors individually, as shown in Figure 6.
Figure 5. Waveform of Bootstrap Capacitor Charge ($V_{CC}=15\,V$, $C_{BS}=47\,\mu F$, $f_{SW}=5.0\,kHz$, $T_J=25^\circ C$)

Figure 6. Recommended Initial Bootstrap Capacitors Charging Sequence

$V_{IN(UL)}$: 5.0V/div I_{BS}: 0.2A/div V_{BS}: 5.0V/div

Time: 500\,\mu s/div
3.3. Selection of Shunt Resistor

The value of shunt resistor is calculated by the following equations.

Maximum Short Circuit (SC) current trip level (depend on user selection):

\[I_{SC\text{(max)}} = 1.5 \times I_d \text{ (rated current)} \] \hspace{1cm} (3)

SC trip reference voltage (depend on user selection):

\[V_{SC} = \min\{0.45 \text{ V, typ.0.5 \text{ V, max.0.55 \text{ V}}\} \text{ (Tolerance 10%, depends on system)} \] \hspace{1cm} (4)

Shunt resistance:

\[I_{SC\text{(max)}} = V_{SC\text{(max)}} / R_{SHUNT\text{(min)}} \rightarrow R_{SHUNT\text{(min)}} = V_{SC\text{(max)}} / I_{SC\text{(max)}} \] \hspace{1cm} (5)

If the deviation of shunt resistor is limited below ±5%:

\[R_{SHUNT\text{(typ)}} = R_{SHUNT\text{(min)}} / 0.95, \ R_{SHUNT\text{(max)}} = R_{SHUNT\text{(typ)}} \times 1.05 \] \hspace{1cm} (6)

Actual SC trip current level becomes:

\[I_{SC\text{(typ)}} = V_{SC\text{(typ)}} / R_{SHUNT\text{(typ)}}, \ I_{SC\text{(min)}} = V_{SC\text{(min)}} / R_{SHUNT\text{(max)}} \] \hspace{1cm} (7)

The power rating of shunt resistor is calculated by the following equation:

\[P_{SHUNT} = (I_{rms}^2 \times R_{SHUNT} \times \text{Margin}) / \text{Derating Ratio} \] \hspace{1cm} (8)

where:

- \(I_{rms} \) = Maximum load current of inverter;
- \(R_{SHUNT} \) = Shunt resistor typical value at \(T_C=25\^\circ\text{C} \);
- Derating Ratio of shunt resistor at \(T_{SHUNT}=100\^\circ\text{C} \) (from datasheet of shunt resistor); and
- Safety margin (determined by customer).

Value of Shunt Resistor Calculation Examples

Calculation Conditions:

- **DUT**: FSB50760SF, Tolerance of \(R_{SHUNT} \): ±5%
- SC trip reference voltage:
 \[V_{SC\text{(min)}}=0.45 \text{ V, } V_{SC\text{(typ)}}=0.50 \text{ V, } V_{SC\text{(max)}}=0.55 \text{ V} \]
 where:
 \[I_{SC\text{(max)}}: 1.5 \times 1.5 = 2.25 \text{ A} \]
 \[R_{SHUNT\text{(min)}}: V_{SC\text{(max)}} / I_{SC\text{(max)}} = 0.55 \text{ V} / 2.25 \text{ A} = 0.24 \Omega \]
 \[R_{SHUNT\text{(typ)}}: R_{SHUNT\text{(min)}} / 0.95 = 0.24 \Omega / 0.95 = 0.26 \Omega \]
 \[R_{SHUNT\text{(max)}}: R_{SHUNT\text{(typ)}} \times 1.05 = 0.26 \Omega \times 1.05 = 0.27 \Omega \]
 \[I_{SC\text{(min)}}: V_{SC\text{(min)}} / R_{SHUNT\text{(max)}} = 0.45 \text{ V} / 0.27 \Omega = 1.67 \text{ A} \]
 \[I_{SC\text{(typ)}}: V_{SC\text{(typ)}} / R_{SHUNT\text{(typ)}} = 0.50 \text{ V} / 0.26 \Omega = 1.94 \text{ A} \]

Power Rating of Shunt Resistor Calculation Example

Calculation Conditions:

- Maximum load current of inverter (\(I_{rms} \)): 1.0 \text{ A}_{rms}
- Shunt resistor value at \(T_C=25\^\circ\text{C} \) (\(R_{SHUNT} \)): 0.27 \Omega
- Derating ratio of shunt resistor at \(T_{SHUNT}=100\^\circ\text{C} \): 70%
- Safety margin: 20%
- \(P_{SHUNT} = (I_{rms}^2 \times R_{SHUNT} \times \text{Margin}) / \text{Derating Ratio} = (0.82 \times 0.27 \times 1.2) / 0.7 = 0.46 \text{ W} \)

(Therefore, recommended power rating of shunt resistor is 1.0 W).
3.4. Design of Short-Circuit Current Protection (SCP) Circuit

Figure 7 and Figure 8 are typical application circuits for SCP function. Figure 7 (using MCU), needs external comparator circuits. Figure 8 (using BLDC controller, such as FCM8531 with an OCP function), needs no external circuits.

![Short-Circuit Current Protection (SCP) Circuit Using MCU](image1)

Figure 7. Short-Circuit Current Protection (SCP) Circuit Using MCU

![Short-Circuit Current Protection (SCP) Circuit Using BLDC Controller](image2)

Figure 8. Short-Circuit Current Protection (SCP) Circuit Using BLDC Controller

3.5. Design of Over-Temperature Protection (OTP) Circuit

Figure 9 is V-T curve of built-in Temperature Sensing (TS) function in the HVIC of FSB50760SF. For detail information of V-T table, refer to related application note.

![V-T Curve of Temperature-Sensing (TS) Function in HVIC of FSB50760SF](image3)

Figure 9. V-T Curve of Temperature-Sensing (TS) Function in HVIC of FSB50760SF
Figure 10 is typical application circuit for temperature-sensing function. In this reference design, the set level is 100°C ($V_{TS}=2.23$ V), reset level is 80°C ($V_{TS}=1.85$ V), and hysteresis temperature is 20°C (see Figure 11). If using an Analog-to-Digital Conversion (ADC) port, only a capacitor between the VTS pin and GND is required (see Figure 12).
4. Print Circuit Board (PCB) Layout Guidance

- The capacitor between V_{CC} and zener diode should be placed to SPM as close as possible.
- It is recommended to connect control GND and power GND at only a point. (Not copper pattern and don’t make a loop in GND pattern). And wiring should be as short as possible.
- The main electrolytic capacitor should be placed to snubber capacitor as close as possible.
- Wiring between N_{P}, N_{V}, and N_{W} should be as short as possible.
- Place snubber capacitor between P and terminal as close as possible.

Figure 13. PCB Layout Guidance
5. Related Resources

FSB50660SF – Motion SPM® 5 SuperFET® Series
FSB50660SFT – Motion SPM® 5 SuperFET® Series
FSB50660SFS – Motion SPM® 5 SuperFET® Series
FSB50760SF – Motion SPM® 5 SuperFET® Series
FSB50760SFT – Motion SPM® 5 SuperFET® Series
FSB50760SFS – Motion SPM® 5 SuperFET® Series
AN-9082 – Motion SPM® 5 Series Thermal Performance Information by Contact Pressure
FCM8531 – MCU Embedded and Configurable 3-Phase PMSM / BLDC Motor Controller
Fairchild Reference Designs at http://www.fairchildsemi.com/referencedesign/

Reference Design Disclaimer

Fairchild Semiconductor Corporation (“Fairchild”) provides these reference design services as a benefit to our customers. Fairchild has made a good faith attempt to build for the specifications provided or needed by the customer. Fairchild provides this product “as is” and without “recourse” and MAKES NO WARRANTY, EXPRESSED, IMPLIED OR OTHERWISE, INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Customer agrees to do its own testing of any Fairchild reference designs in order to ensure design meets the customer needs. Neither Fairchild nor Customer shall be liable for incidental or consequential damages, including but not limited to, the cost of labor, requalifications, rework charges, delay, lost profits, or loss of goodwill arising out of the sale, installation or use of any Fairchild product.

Subject to the limitations herein, Fairchild will defend any suit or proceeding brought against Customer if it is based on a claim that any product furnished hereunder constitutes an infringement of any intellectual property rights. Fairchild must be notified promptly in writing and given full and complete authority, information and assistance (at Fairchild’s expense) for defense of the suit. Fairchild will pay damages and costs therein awarded against Customer but shall not be responsible for any compromise made without its consent. In no event shall Fairchild’s liability for all damages and costs (including the costs of the defense by Fairchild) exceed the contractual value of the products or services that are the subject of the lawsuit. In providing such defense, or in the event that such product is held to constitute infringement and the use of the product is enjoined, Fairchild, in its discretion, shall procure the right to continue using such product, or modify it so that it becomes noninfringing, or remove it and grant Customer a credit for the depreciated value thereof. Fairchild’s indemnity does not extend to claims of infringement arising from Fairchild’s compliance with Customer’s design, specifications and/or instructions, or the use of any product in combination with other products or in connection with a manufacturing or other process. The foregoing remedy is exclusive and constitutes Fairchild’s sole obligation for any claim of intellectual property infringement and Fairchild makes no warranty that products sold hereunder will not infringe any intellectual property rights.

All solutions, designs, schematics, drawings, boards or other information provided by Fairchild to Customer are confidential and provided for Customer’s own use. Customer may not share any Fairchild materials with other semiconductor suppliers.