This reference design supports design of 1200 V Motion SPM® 3 module. It should be used in conjunction with the 1200 V Motion SPM 3 series datasheets as well as Fairchild’s application notes AN-9095, AN-9086. For more information, please visit Fairchild’s website at https://www.fairchildsemi.com.

<table>
<thead>
<tr>
<th>Application</th>
<th>Fairchild Device</th>
<th>IGBT Rating</th>
<th>Motor Rating (1)</th>
<th>Isolation Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Air Conditioner, Industrial Inverters</td>
<td>FSBB10CH120D</td>
<td>10 A / 1200 V</td>
<td>3.2 kW / 440 VAC</td>
<td>$V_{ISO} = 2500 V_{RMS}$ (Sine 60 Hz, 1 min. Between all shorted pins and heat sink)</td>
</tr>
</tbody>
</table>

Notes:
1. This motor rating is a typical value and may change depending on the operating conditions.

Key Features
- 1200 V 10 A 3-Phase IGBT Inverter Including Control ICs for Gate Driving and Protections
- Very Low Thermal Resistance by Adopting DBC Substrate
- Divided Negative DC-Link Terminals for Inverter Three-Leg Current Sensing
- Single-Grounded Power Supply due to Built-in HVICs and Bootstrap Operations
- Isolation Rating of 2500 V_{RMS} / min

MMSZ5252B
- General Purpose, Medium Current Surface Mount Zener in the SOD-123 Package
- Compact Surface Mounting with Same Footprint as Mini-Melf
- 500 mW Rating on FR-4 or FR-5 Board
- Standard Zener Voltage(VZ) Tolerance is ±5%
- Typical Zener Voltage(VZ) is 24 V
1. Block Diagram

Figure 1. Block Diagram of Outdoor Fan Motor for Air-Conditioner (Direct Coupling)
2. Schematic

Figure 2. Schematic of Reference Design for 3-Phase Inverter Part (Direct Coupling)
3. Key Parameter Design

3.1. Selection of Bootstrap Capacitance (C_{BS})

The bootstrap capacitor value can be calculated by Equation (1):

$$C_{BS} = \frac{I_{Leak} \times \Delta t}{\Delta V_{BS}}$$

where:

- Δt = maximum ON-pulse width of high-side IGBT;
- ΔV_{BS} = the allowable discharge voltage of the C_{BS} (voltage ripple);
- I_{Leak} = maximum discharge current of the CBS consisting of:
 - Gate charge for turning the high-side IGBT on
 - Quiescent current to the high-side circuit in the IC
 - Level-shift charge required by level-shifters in IC
 - Leakage current in the bootstrap diode
 - C_{BS} capacitor leakage current (can be ignored for non-electrolytic capacitors)
 - Bootstrap diode reverse recovery charge

Practically, 4.5 mA of I_{Leak} is recommended for FSBB10CH120D (I_{PBS}, operating V_{BS} supply current at 20 kHz, is max. 4.5 mA in the datasheet).

✔ Calculation examples of C_{BS}:

- $I_{Leak} = 4.5$ mA
- $\Delta V_{BS} = 0.1$ V (recommended value)
- $\Delta t = 0.2$ ms (depends on user system)

$$C_{BS_min} = \frac{I_{Leak} \times \Delta t}{\Delta V_{BS}} = \frac{4.5\text{mA} \times 0.2\text{ms}}{0.1\text{V}} = 9.0 \times 10^{-5}$$

More than 2 ~ 3 times \rightarrow 18 ~ 27 μF \rightarrow standard nominal capacitance 22 ~ 33 μF

Notes:

2. In case of trapezoidal control for BLDC motor or 2-phase modulation, long ON time periods of the high-side IGBT may exist. Attention should be paid to the bootstrap supply voltage drop.

3. The above result is only a calculation example. It is recommended that actual PWM patterns and lifetime of components should be considered in the design.
3.2. Selection of Bootstrap Resistor (R_{BS})

A resistor must be added in series with the bootstrap diode to slow down the dV_{BS}/dt and determine the time to charge the bootstrap capacitor. If the minimum ON pulse width of low-side IGBT or the minimum OFF pulse width of high-side IGBT is t_o; the bootstrap capacitor must be charged to increase the voltage by ΔV during this period. Therefore, the value of bootstrap resistance can be calculated by Equation (2):

$$R_{BS} = \frac{(V_{CC} - V_{BS}) \times t_o}{C_{BS} \times \Delta V_{BS}}$$

where:
- V_{CC} = Supply voltage;
- V_{BS} = Minimum bootstrap voltage;
- t_o = Minimum ON pulse width;
- C_{BS} = Bootstrap capacitor value; and
- ΔV_{BS} = Ripple voltage of V_{BS}.

✓ Calculation Examples of R_{BS}:

V_{CC} = 15 V, V_{BS} = 13 V (minimum voltage)

If the rising dV_{BS}/dt is slowed significantly, it could cause missing pulses during the startup phase due to insufficient V_{BS} voltage.

3.3. Selection of Bootstrap Diode

When high side IGBT or diode conducts, the bootstrap diode (D_{BS}) supports the entire bus voltage. A withstand voltage higher than 1200 V is recommended. It is important that this diode should be a fast recovery (recovery time < 100 ns) device to minimize the amount of charge that is fed back from the bootstrap capacitor into the V_{CC} supply. Similarly, the high voltage reverse leakage current is important if the capacitor has to store a charge for long periods of time. Recommended diodes are below.

- STM: STTH112(DO-41), STTH112U(SMB)
- Vishay: EGF1T(DO-214BA), SF1200(SOD-57)
3.4. Selection of Shunt Resistor (One Shunt)

The value of shunt resistor is calculated by the following equations.

Maximum Short-Circuit (SC) current trip level (depends on user selection):

$$I_{SC(max)} = 1.5 \times I_{C(max)}$$

SC Trip Reference Voltage (depends on datasheet):

$$V_{SC} = \text{min. 0.43 V, typ. 0.5 V, max. 0.57 V}$$

Shunt Resistance:

$$I_{SC(max)} = \frac{V_{SC(max)}}{R_{SHUNT(min)}} \Rightarrow R_{SHUNT(min)} = \frac{V_{SC(max)}}{I_{SC(max)}}$$

If the Deviation of the Shunt Resistor is Limited below ± 5%:

$$R_{SHUNT(typ)} = \frac{R_{SHUNT(min)}}{0.95}, R_{SHUNT(max)} = R_{SHUNT(typ)} \times 1.05$$

Actual SC Trip Current Level becomes:

$$I_{SC(typ)} = \frac{V_{SC(typ)}}{R_{SHUNT(typ)}}, I_{SC(min)} = \frac{V_{SC(min)}}{R_{SHUNT(max)}}$$

Inverter Output Power:

$$P_{OUT} = \sqrt{3} \times V_{O,LL} \times I_{RMS} \times PF$$

where:

MI = Modulation Index;

$$V_{O,LL} = \text{Line to Line Voltage} = \frac{\sqrt{3}}{\sqrt{2}} \times MI \times \frac{V_{DC_Link}}{2}$$

$$V_{DC_Link} = \text{DC link voltage;}$$

$$I_{RMS} = \text{Maximum load current of inverter;}$$

and

$$PF = \text{Power Factor}$$

Average DC Current:

$$I_{DC_AVG} = \frac{V_{DC_Link}}{(P_{out} \times Eff)}$$

where:

$$Eff = \text{Inverter efficiency}$$

The power rating of shunt resistor is calculated by the following equation:

$$P_{SHUNT} = (I_{DC_AVG}^2 \times R_{SHUNT} \times \text{Margin}) / \text{Derating Ratio}$$

where:

$$R_{SHUNT} = \text{Shunt resistor typical value at } T_C = 25^\circ C$$

$$\text{Derating Ratio} = \text{Derating ratio of shunt resistor at } T_{SHUNT} = 100^\circ C$$

(From datasheet of shunt resistor); and

$$\text{Margin} = \text{Safety margin (determined by user)}$$
✓ Shunt Resistor Calculation Examples

Calculation Conditions:

- DUT: FSBB10CH120D
- Tolerance of shunt resistor: ±5%
- SC Trip Reference Voltage:
 - $V_{SC(min)} = 0.43$ V, $V_{SC(typ)} = 0.50$ V, $V_{SC(max)} = 0.57$ V
- Maximum Load Current of Inverter (I_{RMS}): 5 A
- Maximum Peak Load Current of Inverter ($I_{C(max)}$): 10 A
- Modulation Index (MI): 0.9
- DC Link Voltage ($V_{DC,Link}$): 600 V
- Power Factor (PF): 0.8
- Inverter Efficiency (Eff): 0.95
- Shunt Resistor Value at $T_C = 25^\circ C$ (R_{SHUNT}): 40.0 mΩ
- Derating Ration of Shunt Resistor at $T_{SHUNT} = 100^\circ C$: 70%
- Safety Margin: 20%

Calculation Results:

- $I_{SC(max)}$: $1.5 \times I_{C(max)} = 1.5 \times 10$ A = 15 A
- $R_{SHUNT(min)}$: $V_{SC(max)} / I_{SC(max)} = 0.57$ V / 15 A = 38.0 mΩ
- $R_{SHUNT(typ)}$: $R_{SHUNT(min)} / 0.95 = 38.0$ mΩ / 0.95 = 40.0 mΩ
- $R_{SHUNT(max)}$: $R_{SHUNT(typ)} \times 1.05 = 40.0$ mΩ x 1.05 = 42.0 mΩ
- $I_{SC(min)}$: $V_{SC(min)} / R_{SHUNT(max)} = 0.43$ V / 42.0 mΩ = 10.24 A
- $I_{SC(typ)}$: $V_{SC(typ)} / R_{SHUNT(typ)} = 0.5$ V / 40.0 mΩ = 12.50 A
- $V_{O,LL} = \frac{\sqrt{3}}{\sqrt{2}} \times MI \times \frac{V_{DC,Link}}{2} = \frac{\sqrt{3}}{\sqrt{2}} \times 0.9 \times 300 = 330.7$ V
- $P_{OUT} = \sqrt{3} \times V_{O,LL} \times I_{RMS} \times PF = \sqrt{3} \times 330.7 \times 5 \times 0.8 = 2291$ W
- $I_{DC,AVG} = (P_{OUT}/Eff) / V_{DC,Link} = 4.01$ A
- $P_{SHUNT} = (I_{DC,AVG}^2 \times R_{SHUNT} \times Margin) / Derating~Ratio = (4.01^2 \times 0.04 \times 1.2) / 0.7 = 2.0$ W

When over-current events are detected, 1200 V Motion SPM 3 series shuts down all low-side IGBTs and sends out the fault-out (FO) signal. Fault-out pulse width can be adjusted by the capacitor CFOD connected to the CFOD terminal. This fault duration can be calculated by the equation:

$$t_{FOD} [s] = 0.8 \times 10^6 \times C_{FOD}[F]$$

To prevent malfunction, it is recommended that an RC filter be inserted at the C_{SC} pin. To shut down IGBTs within 2 µs when over-current situation occurs, a time constant of 1.5 ~ 2 µs is recommended.
3.5. Print Circuit Board (PCB) Layout Guidance

- Wiring between Nu, Nv, Nw and shunt resistor should be as short as possible.
- Place snubber capacitor between P and N and closely to terminal.
- The main electrolytic capacitor should be placed to snubber capacitor as close as possible.
- It is recommended to connect Signal GND and Power GND at only a point. (Not copper pattern and don't make a loop in GND pattern.) And this wiring should be as short as possible.
- The capacitor between VCC and COM should be placed to SPM as close as possible.
- The VIN RC filter should be placed to SPM as close as possible.
- CSC wiring should be as short as possible.
- Capacitor and Zener diode should be locate closely to terminal.
- The isolation distance between high voltage block and low voltage block should be kept.

Figure 3. PCB Layout Guidance
Reference Design Disclaimer

Fairchild Semiconductor Corporation (“Fairchild”) provides these reference design services as a benefit to our customers. Fairchild has made a good faith attempt to build for the specifications provided or needed by the customer. Fairchild provides this product “as is” and without “recourse” and MAKES NO WARRANTY, EXPRESSED, IMPLIED OR OTHERWISE, INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Customer agrees to do its own testing of any Fairchild reference designs in order to ensure design meets the customer needs. Neither Fairchild nor Customer shall be liable for incidental or consequential damages, including but not limited to, the cost of labor, requalifications, rework charges, delay, lost profits, or loss of goodwill arising out of the sale, installation or use of any Fairchild product.

Subject to the limitations herein, Fairchild will defend any suit or proceeding brought against Customer if it is based on a claim that any product furnished hereunder constitutes an infringement of any intellectual property rights. Fairchild must be notified promptly in writing and given full and complete authority, information and assistance (at Fairchild’s expense) for defense of the suit. Fairchild will pay damages and costs therein awarded against Customer but shall not be responsible for any compromise made without its consent. In no event shall Fairchild’s liability for all damages and costs (including the costs of the defense by Fairchild) exceed the contractual value of the products or services that are the subject of the lawsuit. In providing such defense, or in the event that such product is held to constitute infringement and the use of the product is enjoined, Fairchild, in its discretion, shall procure the right to continue using such product, or modify it so that it becomes noninfringing, or remove it and grant Customer a credit for the depreciated value thereof. Fairchild’s indemnity does not extend to claims of infringement arising from Fairchild’s compliance with Customer’s design, specifications and/or instructions, or the use of any product in combination with other products or in connection with a manufacturing or other process. The foregoing remedy is exclusive and constitutes Fairchild’s sole obligation for any claim of intellectual property infringement and Fairchild makes no warranty that products sold hereunder will not infringe any intellectual property rights.

All solutions, designs, schematics, drawings, boards or other information provided by Fairchild to Customer are confidential and provided for Customer’s own use. Customer may not share any Fairchild materials with other semiconductor suppliers.